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Molecular chaperones play important roles in all cellular organisms by maintaining the proteome in an optimally folded state.
They appear to be at a premium in cancer cells whose evolution along the malignant pathways requires the fostering of cohorts
of mutant proteins that are employed to overcome tumor suppressive regulation. To function at significant rates in cells, HSPs
interactwith cochaperones, proteins that assist in catalyzing individual steps inmolecular chaperoning aswell as in posttranslational
modification and intracellular localization. We review current knowledge regarding the roles of chaperones such as heat shock
protein 90 (Hsp90) and Hsp70 and their cochaperones in cancer. Cochaperones are potential targets for cancer therapy in
themselves and can be used to assess the likely prognosis of individual malignancies. Hsp70 cochaperones Bag1, Bag3, and Hop
play significant roles in the etiology of some cancers as do Hsp90 cochaperones Aha1, p23, Cdc37, and FKBP1. Others such as
the J domain protein family, HspBP1, TTC4, and FKBPL appear to be associated with more benign tumor phenotypes. The key
importance of cochaperones for many pathways of protein folding in cancer suggests high promise for the future development of
novel pharmaceutical agents.

1. Introduction

Chaperones/HSPs.Molecular chaperones are a diverse group
of proteins involved in the maintenance of other “client”
proteins in folded and active conformations in all cellular
organisms [1–5]. The term molecular chaperone is however
generally reserved for proteins with a dedicated role in pro-
tein folding and refolding derived from the HSPA (HSP70),
HSPB (small HSP), HSPD (Hsp60), HSPC (Hsp90), and
HSPH (large HSP) gene families originally discovered as heat
shock protein (HSP) genes [2, 6]. Products of these genes
direct the folding of much of the proteome, resulting in
the formation of proteins or protein complexes capable of
metabolic functions in the cell. A subset of these proteins is
also expressed at high levels in cells after proteotoxic stresses
such as exposure to heat shock, heavy metals, alcohols and
sodiumarsenite [7–10].Hence, they came to be known as heat
shock proteins [7, 10]. Proteotoxic stresses lead to abundant
levels of unfolded, aggregated, and ubiquibinated proteins,
and cells respond to such an insult by abundant synthesis

of HSPs capable of resolving these perturbations to the pro-
teome [11]. These proteins are known to increase cell survival
after stress both through direct chaperoning of malfolded
proteins as well as inhibition of programmed cell death [12–
14]. Altered demand for molecular chaperones is also associ-
ated with human diseases. For instance, in age-related degen-
erative diseases, aggregation-prone proteins accumulate and
appear to exhaust the capacity of the molecular chaperone
system [15–17]. Of more relevance for the current review,
accumulation of mutated and overexpressed oncoproteins in
cancer also leads to a demand for molecular chaperones and
elevated levels of HSPs is characterize many malignancies
[18–20]. This dependence on molecular chaperones appears
to be a soft spot in the armor of the cancer cells and has led
to the development of drugs aimed at depleting molecular
chaperones and degrading the cancer proteome, leading to
loss of viability of the tumors [21, 22]. In addition to their role
in chaperoning the cancer cell proteome, HSPs are essential
for evasion of a number of pathways of cell inactivation. For
instance Hsp70 is involved in the inhibition of both caspase
dependent apoptosis and senescence, key pathways in tumor
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Table 1: Cochaperones.

Name Function Conserved domain Role in cancer Associated proteins Reference
Hsp70

JDP Substrate selection J Supp — [101–105]
HspBP1 Nucleotide exchange — Supp — [96–99]
Bag1 Nucleotide exchange BAG, UBL Onc [92]
Bag3 Nucleotide exchange BAG, WW Onc HspB8 [90, 91, 93]
Hop Adaptor TPR Onc TDB proteins [107–109]

Hsp90
Sgt1 Substrate selection CHORD — Hsp70 [116–119]
P23 ATPase inhibitor p23 Onc — [112–115]
Aha1 ATPase inhibitor Aha1 Onc — [131, 132]
Cdc37 ATPase inhibitor Hsp90 bd Onc Kinases [120–129]
Hop Adaptor TPR Onc TDB [107–109]
Cyp40 Immunophilin TPR, PPiase — TDB [32, 134]
FKBP1 Immunophilin TPR, PPiase Onc TDB [135, 136]
FKBP2 Immunophilin TPR, PPiase Onc TDB, dynein [134, 137, 138]
PP5 Protein phosphatase TPR — TDB [139–147]
TTC4 Adaptor, replication TPR Supp TDB, Myst, MOF [148–153]
TTC5 Adaptor, transcription TPR — TDB, p300 [88, 154–157]
XAP2 Nuclear receptors TPR — TDB [158–161]

suppression [14, 23–25]. The mechanisms which underlie the
elevated expression of molecular chaperones of the HSPA
and HSPD families in cancer are currently unclear but may
involve the dysregulation of transcription factor HSF1 first
shown to couple stress to HSP transcription [8, 26]. HSF1 is
elevated and becomes activated in a wide range of cancers,
its expression is coupled to the severity of disease, and it has
been shown to be coupled to upstream signaling pathways in
the malignant cell [27–31].

Cochaperones. As with many cellular proteins with dynamic
function, HSP molecular chaperones do not appear to work
alone and require the assistance of accessory proteins, known
in this case as cochaperones [1, 3, 32–35] (Table 1). Three
particular classes of chaperone appear of high significance in
cancer and these include theHSPA,HSPB, andHSPC families
[19]. We will discuss here the HSPA and HSPC molecular
chaperone families and the associated co-chaperones. Each
HSP class appears to be regulated by an individual cohort of
co-chaperones and these molecules that may be significant
factors in cancer and carcinogenesis and potential targets for
therapy.

Much has been discovered regarding the molecular and
biochemical properties of HSPA family members such as
Hsp70 and Hsc70. Hsp70 family members are described as
being regulated by a bidirectional heterotrophic allosteric
mechanism by a tautology between target polypeptides and
adenosine nucleotides [3, 36]. Thus Hsp70, family proteins
contain two major functional domains including an N-
terminal nucleotide binding region and a C-terminal region
that can interact with the hydrophobic residues in par-
tially unfolded proteins (client binding domain) [5, 36–39]
(Figure 1). “Empty” Hsp70 contains ATP in its N-terminal

domain, and in this form the C-terminal domain can interact
with suitably unfolded clients [3]. Binding is stabilized when
the uptake of clients in the C-terminal domain triggers the
ATPase activity of the N domain [3]. Clients are subsequently
released, usually when refolded. This mechanism has been
proposed to involve at least two modes of action, including
(1) through stable “holding” of the client, Hsp70 maintains
the levels of free unfolded client low enough to prevent
aggregation; (2) inducing local unfolding in client protein
domains and thus overcoming kinetic barriers to the native
folded state. In the cell these biochemical properties of Hsp70
andCo. is regulated by co-chaperones that can couple activity
to cell physiology/pathology [32, 40].

For Hsp70, co-chaperones include a large family of J
domain proteins that can bind to specific substrates and
foster association of such clients with Hsp70 [40, 41]. These
proteins contain a J domain capable of interacting with the
ATP domain of the Hsp70s and a client binding domain
that can associate with unfolded proteins and transfer them
to the client binding site of Hsp70, resulting in a multifold
stimulation in the ATPase activity of client-bound Hsp70
[41–43]. There are at least 49 members of the human J
domain protein family [44–46]. Following the “client hold-
ing” stage of the cycle, the next step is client release and
perhaps refolding. In order for Hsp70 to release clients, ADP
must dissociate from the N-terminal domain, a relatively
gradual reaction that can however be strongly stimulated by
nucleotide exchange factors such as BAG domain proteins
[45–48]. The BAG (Bcl2-associated athanogene) domain
interacts with the ATPase domain of Hsp70 and stimulates
ADP release permitting client efflux by allosteric regulation of
the N-terminal domain [47, 48]. Other nucleotide exchange
factors include HspBP1 [49, 50]. The cytoplasmic members
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Figure 1: Reaction cycle for Hsp70 family polypeptides. Hsp70 proteins are portrayed as consisting of two major functional domains,
including an N-terminal ATPase domain and a C-terminal client protein binding domain. When ATP occupies the ATPase domain, the
C-terminal client protein-binding domain has weak affinity for clients. In the first step in chaperoning, the client protein (here depicted as
unfolded) associated with a J domain protein (JDP) is able to bindHsp70.This interaction causes allosteric changes in the N-terminal ATPase
domain, ATP hydrolysis, and tight binding of substrate. Release of the client is then associated with nucleotide exchange loss of ADP and
phosphate and replacement with ATP. In order to occur at a significant rate in cells nucleotide exchange factors such as Bag1 and HspBP1 are
required. Released client is depicted as “folded.” However, the precise nature of the processes involved in achieving this state are not clear. We
also show an alternative fate for Hsp70 client complexes involving the scaffold protein Hop. Hop can bind the extreme C-terminus of Hsp70
and couple it to other proteins such as Hsp90. Clients can thus be passed from Hsp70 to Hsp90 in a coordinated folding process.

of the hspa family also contain a TPR domain binding (TDB)
site at the extreme C-terminus. The TPR (tetratricopeptide)
domain is a protein interaction motif found in a range of
proteins many of which interact with molecular chaperones
Hsp70 and Hsp90 [51]. In the case of Hsp70, such TPR
domain proteins include the scaffold protein Hop/Sti (Hop:
Hsp70/Hsp90 organizing protein) and the ubiquitin E3 ligase
CHIP [52–54].

HSPC (Hsp90) proteins, although bearing minimal
sequence conservation with the HSPA family, have some
biochemical properties in common with the Hsp70 proteins
[55–57]. The HSPC family includes four major members,
including two cytoplasmic proteins Hsp90𝛼 and Hsp90𝛽, an
ER resident member glucose-regulated protein 94 (grp94)
and a mitochondrially located member TRAP1 [57–60].
Hsp90𝛼 and Hsp90𝛽 are of most significance in cancer
where they are expressed to very high levels and are sig-
nificant targets for drug development [18, 21, 61, 62]. These
molecules have in commonwithHsp70 the ability to bind and
hydrolyze ATP and to bind and modify the conformations
of clients [63]. Hsp90 proteins function as dimers and the
ATP binding, and hydrolysis cycles regulate dimerization and
client binding as with Hsp70 [56, 64–67]. The nature of the
client interaction domain is not entirely clear although it is
thought to bind the amino acid and middle domains on the
outside of the dimer [68, 69]. In addition, cytoplasmic Hsp90
proteins also contain a TPR domain binding site at the C-
terminus. Hsp90 interacts with an array of co-chaperones.

These include p23/Sba1, a protein with intrinsic chaperone
activity that stabilizes the closed conformation of Hsp90 by
inhibiting ATPase activity and thus prolongs interaction with
clients such as steroid hormones [70, 71]. Another key co-
chaperone is p50/Cell DivisionCycle 37 (Cdc37) that binds the
N-terminal ATP binding domain, inhibits ATPase activity,
and is of particular significance in interaction with protein
kinases [72–75]. While p23 and Cdc37 appear to function by
stabilizing Hsp90 client interactions, another co-chaperone
Sgt1 appears to function at the beginning of the cycle binding
ATP-free Hsp90 and helping to recruit clients to the chaper-
one in an analogous way to the function of JDPs in Hsp70
[76]. The other core co-chaperone is Activator of the Hsp90
ATPase (Aha1), a protein that binds Hsp90 in the middle
domain and triggersATPase activity andperhaps dissociation
of clients [77, 78]. In addition to this core group, a large array
of TPR domain co-chaperones bind to the C-terminus TDB
motif of Hsp90 and can modulate chaperoning functions
in specific clients, including scaffold protein Hop, protein
phosphatase PP5, immunophilins FKBP1, FKBP2, Cyp4, and
TPR domain proteins TTC4, TTC5, and XAP2/AIPL1 [68].

The TBD motifs of Hsp70 and Hsp90 proteins are key to
determining the role of both proteins in intracellular protein
quality control as well as more subtle interaction with bound
clients. When Hsp70 binds to the multiple TPR domain scaf-
fold protein Hop on its specific recognition site, Hsp90 can
also bind to another TPRmotif inHop [79, 80]. Such coupling
permits a coordinated pathway of remodeling of some clients,
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with initial folding of nascent proteins by Hsp70/HDJ com-
plexes commencing on the ribosome, preceding fine tuning
of client conformation by Hsp90/p23/Cdc37/immunophilin
complexes and full maturation of functional polypeptides
[73]. Alternatively, protein quality control can be biased
towards proteolysis and disposal of damaged proteins when
the E3 ligase CHIP binds the TBD motifs of either Hsp70 or
Hsp90 [54, 81, 82]. Triage between the various arms of protein
quality control involves complex regulatory decisionmaking.
For instance, formation of the Hsp70/Hop/Hsp90 complex is
favored by the nucleotide exchange factor Bag1 [45]. Alterna-
tively, Bag3 favors the disposal of polyubiquitinated proteins
bymacroautophagy [83, 84]. Asmentioned above, Hsp90 can
bind a range of co-chaperones through the C-terminal TBD
motif and can affect changes in phosphorylation of clients by
PP5 and maturation of clients such as steroid hormones by
immunophilins Cyp40, FKBP1, and FKBP2 [68]. Although
the immunophilins are able to effect proline isomerization
as a basic function, these properties do not seem essential
in Hsp90 cochaperone mode [85, 86]. Other mechanisms
seem to be involved. TTC 5 is an interesting molecule with
potentially profound roles in cell physiology. This protein
contains 6 TPR motifs and binds to transcriptional co-
activators, activating transcription by factors such as p53 and
HSF1 [87, 88]. Binding to the TBDmotifs onHsp70 or Hsp90
might thus permit coupling of protein unfolding in stress or
quality control to transcriptional remodeling.

2. Hsp70 Cochaperones and Cancer

2.1. BAG Domain Proteins. As mentioned above, BAG
domain proteins (Bag1-6) can associate with the nucleotide
binding domain of Hsp70 family members, stimulate nu-
cleotide exchange, and thus promote molecular chaperone
activity (Figure 1) [3]. Bag1-6 are multidomain proteins, each
of which contains the Hsp70-binding BAG domain close to
the C-terminus [46, 47, 89, 90].The two familymembers with
most significance in cancer appear to be Bag1 and Bag3. Bag1
also contains a UBL domain that can bind polyubiquitinated
proteins and indeed has been shown to bias protein quality
control towards proteolytic degradation through its ability
to bind polyubiquitinated proteins [3]. Bag3 contains WW
and proline rich repeat sequences that appear to permit it to
interact with cell signaling molecules [46]. Indeed, Bag3 can
interact with the molecular chaperone HspB8 and mediate
macroautophagy [83]. Another difference between Bag1 and
Bag3 is that while Bag1 is constitutively expressed, Bag3 is
conditionally inducible and indeed responds to the stress-
inducible transcription factor HSF1 [91]. Elevated expression
of Bag1 and Bag3 in each case signals a poor prognosis for
cancer bearing patients. This effect may be related to the
ability of BAG/Hsp70 complexes to inhibit apoptosis [90–
92]. Indeed double knockdown of Bag1 and Bag3 in acute
myeloid leukemia caused loss of antiapoptotic proteins Bcl2,
Bcl-XL, Mcl1, and phosphor-ERK1/2 [92]. The roles of Bag1
and Bag3 are somewhat complicated by their opposing role in
protein quality control, with Bag1/Hsp70 favoring proteaso-
mal degradation of clients (such as BCR-ABL oncoproteins)

and Bag3 competing for binding to Hsp70 and deterring
entry into the proteasome pathway [45, 46]. For instance,
complexing of Bag3 with Hsp70 can protect oncogenic IKK
gamma from proteasomal degradation, increase flux through
the NF kappa B pathway, and increase cell growth and
survival [93].

2.2. HspBP1. Similar to the BAG domain proteins, HspBP1
is also a nucleotide exchange factor that can stimulate the
ATPase cycle of Hsp70 (Figure 1). Although both proteins
induce nucleotide exchange, the mechanisms employed for
this activity appear to involve contrasting interactions with
the ATPase domain [94]. In addition, HspBP1 appears to
be able to oppose the proteolytic pathway of protein quality
control and binding of the protein to the ATPase domain of
Hsp70 inhibits the ubiquitin ligase activity of CHIP when
attached to the TBP domain of Hsp70 [95]. In contrast to
the BAG proteins, HspBP1 appears to play a suppressive
role in a number of types of cancer [96]. HspBP1 levels
are elevated in breast tissue and inversely related to aggres-
siveness [96]. In addition some chemotherapeutic agents
can increase cytotoxicity by inhibiting Hsp70 function [97].
Hsp70 appears to inhibit a unique pathway of cell death in
tumor cells involving lysosomal membrane permeabilization
and activation of caspase 3 [98, 99]. HspBP1 appears to
oppose this Hsp70-regulated pathway [97].

2.3. J Domain Proteins. JDPs are the most abundant family
of Hsp70 co-chaperones with at least 49 members [44]. The
founder member of the family is the E. coli DNAJ, which
along with the prokaryotic Hsp70 (DNAK) and nucleotide
exchange factor (Grpe) is responsible for the bacterial Hsp70
cycle as in Figure 1 [55, 100]. JDPs characteristically function
by locating client proteins and ensuring their tight binding
to Hsp70 [3, 44]. This is assisted by the ability of JDPs to
stimulate the ATPase activity of the Hsp70 chaperone and
lock the client into the closed peptide binding domain [44].
All JDPs contain the 70 amino acid J domain, which is
essential for interaction of the protein with Hsp70. There
are three families of JDP, including types I, II, and III [44].
JDPs tend to be either elevated to distinctly high levels
or deregulated in cancer [101]. However, the majority of
JDP, at least in studies carried out so far, appear to be
tumor suppressive in nature [44]. Notable examples of tumor
suppressive JDP include TID1/DNAJA3 that functions in the
mitochondrial matrix as an inhibitor of carcinogenesis and
mammalian relative of DnaJ (MRJ) that negatively regulates
breast cancer malignancy and reduces b-catenin signaling
[102–105].

2.4. Hop. Hop, also known as STIP1, mediates Hsp70/Hsp90
interactions through their TBD domains [106] (Figure 1).
Only a limited amount of information is available regard-
ing the possible involvement of Hop in cancer. How-
ever, increased levels of Hop were observed in human
colon cancer, associated with increased Hsp70, Hsp90, and
Hop/Hsp70/Hsp90 complexes [107]. Hop expression is also
increased in hepatocellular carcinoma [108]. Interestingly,
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Figure 2: Reaction Cycle for Hsp90. Hsp90 functions as a dimer
in a cycle of client binding, ATP binding, ATPase activity, and
nucleotide exchange as with Hsp70. The dimers are in an open
conformation when empty and a more closed conformation when
ATP binds. Substrate binding is assisted by co-chaperone Sgt1.
For Hsp90, in which prolonged “holding” of clients seems an
important component of its cellular function, the co-chaperones
p23 and Cdc37 inhibit ATPase activity and stabilize Hsp90 client
complexes. For nucleotide exchange to take place after ATPase
activity eventually occurs, Aha1 functions as an exchange factor.
As with Hsp70, triage of the protein between pathways of protein
quality control involves scaffold protein Hop that binds the C-
terminal TPR domain-binding motif (TBD). Through the TBP,
Hsp90 can interact with a range of TPR domain containing co-
chaperones that regulate intracellular function.

knockdown of Hop by RNA targeting in pancreatic cancer
cells reduced the levels of proteins that have been previously
isolated as Hsp90 clients in cancer such as HER2, Bcr-
Abl, c-Met, and v-Src, suggesting that Hop ablation in
cancer cells could be functionally similar to Hsp90 inhibition
which decreases tumor growth by reducing levels of key
oncoproteins [18, 22, 109]. As mentioned above, Hop is a
poly-TPR domain scaffold protein that couples Hsp90 to the
Hsp70 folding cycle as well as to other co-chaperones, and
loss of Hop may be functionally similar to deletion of the
TBP domain of Hsp90, a modification that ablates chaperone
function [106]. In addition, Hop knockdown also led to the
loss of matrix metalloproteinase 2 (MMP-2) and a decrease
in cancer cell migration, also consonant with a permissive
role for Hop in cancer progression [109]. Hop is thus a
co-chaperone for both Hsp70 and Hsp90, a coordinator of
Hsp70/Hsp90 interaction, a scaffold for binding of other co-
chaperones, and a potential target in cancer.

3. Hsp90 Cochaperones and Cancer

3.1. P23. P23 is an inhibitor of the ATPase activity of Hsp90
(Figure 2) and through this function can promote sustained
interaction between hsp90 and a wide range of clients such as

steroid hormone receptors and HSF1 [70, 110]. Recent studies
point to a role for p23 in tumor progression and cancer
formation. High levels of p23 were associated with increased
metastasis in breast cancer and indicated a poor prognosis
including enhanced disease recurrence [111]. In addition, p23
targets genes involved in drug resistance and metastasis such
as PMP22, ABCC3, AGR2, Sox2, TM4SF1, and NUPR were
expressed to high levels in p23 overexpressing mammary
carcinoma cells [111]. p23 could also be involved in the
incidence of prostate cancer as a key component of the
androgen receptor activity [112]. Interestingly, these effects
may involve bothHsp90-dependent andHsp90-independent
effects. Hsp90-independent roles for p23 have been shown
previously [113]. Another mechanism for increasing cancer
incidence may involve inhibition of apoptosis in malignant
cells. p23 is overexpressed in acute lymphoblastic leukemia
(ALL) and functions as an inhibitor of chemotherapy induced
apoptosis [114]. These effects may be connected to loss of the
microRNA species has-miR-101 in childhood ALL cases and
concomitant p23 dysregulation [114]. Interestingly, a novel
plant product known as gedunin has been isolated that can
bind p23, block its chaperoning and transcriptional activities,
and lead to programmed cell death in malignant cells [115].

3.2. Sgt1. Sgt1 is a CHORD domain protein that acts early
in the ATPase cycle of Hsp90 and may help to recruit client
proteins in a similar manner to JDP for Hsp70 [116]. In
addition, Sgt1 can bind to Hsp70 leading to the formation
of an Sgt1/Hsp90/Hsp70 chaperone complex important in
the function of leucine rich repeat proteins [117]. However,
although Sgt1 shares sequence similarities with p23, few
reports of a role for the protein in cancer are currently
available. Sgt1 seems to be an important HSP co-chaperone
in innate immune signaling through the intracellular NLR
pathway and in kinetochore function [118, 119].

3.3. P50/Cdc37. Cdc37 appears to play a highly significant
role in cancer and its forced expression in transgenic mice
leads to prostatic hyperplasia and, when expressed in con-
junction with the oncogene c-Myc, to prostate cancer [120,
121]. Cdc37 is also expressed to high level in other types of
malignancy such as anaplastic large cell lymphoma, acute
myelocytic leukemia, hepatocellular carcinoma, andmultiple
myeloma [122–125]. The key biochemical function of Cdc37
appears to slow down the ATPase cycle of the Hsp90 complex
and extend the holding time of the client [73]. Cdc37 and
Hsp90 form triple complexes with many proteins, being
associated with protein kinases in particular [126, 127]. Such
protein kinases include a long list of enzymes involved in
promoting cell growth, including receptor tyrosine kinases
epidermal growth factor (EGFR) and MET, nonreceptor
tyrosine kinases SRC and LCK, and serine/threonine kinases
RAF1, AKT1, IKK CDC2, and CDK2 (see [73, 74]). Not
surprisingly, reduction in Cdc37 levels by RNA interference
had a profound effect in reducing tumor cell growth [128,
129]. In prostate carcinoma, Cdc37 knockdown inactivated
cell growth and sensitized tumors to Hsp90 inhibitors [128].
It is not clear why Cdc37 is selectively carcinogenic in
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prostate as opposed to other tissues. One possibility is that
the androgen receptor, one of the few nonkinase clients
of Cdc37, is activated by elevated levels of Cdc37 [130].
However, Cdc37 knockdown inhibited growth of androgen
receptor negative Prostate Carcinoma (PC-3 and DU-145) as
effectively as it affected androgen-requiring LnCap cells [128].
In these cells, Cdc37 effectively inhibited both the ERK and
Akt pathways as well as EGFR signaling [128] (J. Cheng& S.K.
Calderwood, in preparation). Cdc37 therefore seems to be a
strong molecular candidate for targeted therapy, particularly
in prostate carcinoma [73].

3.4. Aha1. While many chaperones function to slow down
the ATPase cycle of Hsp90, Aha1 triggers ATPase activity and
release of client proteins from the complex [77]. Despite this,
Aha1 appears to be involved in increasing the activity of c-
Src by Hsp90 chaperonemachines andmaintaining signaling
activity [131]. Aha1 mRNA levels are elevated in lymphoblast
and testicular germ cells, although few studies have addressed
levels in cancer [132]. However, Aha1 concentrations appear
high in promyelocytic leukemia and Daudi Burkett’s lym-
phoma cells [132]. Holmes et al. studied Aha1 protein levels in
a range of human cancer cells and found markedly different
levels in the different cell lines [133]. Treatment with the
Hsp90 inhibitory drug 17-AAG increased Ah1 levels, an effect
that appeared to reflect the activation of HSF1 by the Hsp90
ablation [133]. Asmight be predicted, reduction inAha1 levels
led to sensitization of cells to 17-AAG [133].

4. Hsp90 Interaction with
TPR Domain Proteins

A number of proteins have been shown to bind to the TBD
domains of Hsp90, including the scaffold protein Hop as
mentioned above. These interactions have been intensively
studied in regard to the regulation of steroid hormone
receptors [63]. Hsp90 and co-chaperones are thought to
be continuously required to maintain proteins such as glu-
cocorticoid receptor (GR), mineralocorticoid receptor, and
progesterone receptor in stable conformations receptive to
activation by their respective ligands [32, 63, 134]. Receptors
such as estrogen receptor and androgen receptor appear
less prone to regulation by chaperone complexes [134]. TPR
domain proteins that interact with the C-terminal TBD of
Hsp90 include protein phosphatase 5 (PP5), immunophilins
FKBP1/2 and Cyp40, and TPR additional domain proteins
such as TTC4, TTC5, TPR2, XAP2, and AIPL1 [134].

Protein Phosphatase 5 (PP5). PP5 is a serine/threonine phos-
phatase and is a member of the PPP phosphatase family that
also includes PP1 and PPA2 [139–141]. Clearly, association
with a protein phosphatase has considerable potential for
modulating the properties of Hsp90 complexes. Indeed,
binding of PP5 to Hsp90 has potentially pleiotropic effects
as the enzyme may modify the phosphorylation of Hsp90
itself as well as modulating phosphorylated sites on other
co-chaperones and on its bound clients [142, 143]. PP5
can dephosphorylate Hsp90 and thus positively regulate

its molecular chaperone activities [142, 144]. In addition,
Hsp90-bound PP5 dephosphorylates the key co-chaperone
Cdc37 on the residue serine 13, essential for intracellular
function and thus reduces its ability to chaperone some of
its many kinase clients [145]. The metabolic activities of
chaperoned clients may be positively or negatively regulated
by Hsp90-associated PP5, depending on the nature of the
phosphorylation sites involved. For instance, in lipogenesis,
PP5 can simultaneously activate GR and repress Peroxisome
Proliferator Activated Receptor-𝛾 (PPAR-𝛾) through dephos-
phorylation of certain serine residues [140]. In addition,
Hsp90-PP5 interactions also influence cell cycle progression
and DNA repair pathways through dephosphorylation of
key Ser/Thr residues in DNA-dependent protein kinase and
ATR [146, 147]. Thus, PP5 may play a key role in regulating
many aspects of chaperone complexes in cancer although it is
currently not clear what the overall effect ofHsp90-associated
PP5 might be.

Immunophilins. Immunophilins are proteins that bind to
immunosuppressive drugs such as cyclosporine and FK506
and have common domains with peptidyl-prolyl cis-trans
isomerase (PPIase) activity [162]. At least three immuno-
philins with TPR domains, FKBP1, FKBP2, and Cyp40,
are known to bind the TBD of Hsp90 and act as co-
chaperones [68]. Cyp40 is present in complexes between
Hsp90 and a number of steroid hormones such as GR and
PR and increased transcriptional activity of the hormones
when overexpressed [134, 163]. Activity appears to require
the TPR and PPIase domains although a role for PPIase
activity in the co-chaperone properties of Cyp40 has not
been demonstrated [85, 86]. Cyp40 and other immunophilins
may play a role in hormone-dependent malignancies such as
prostate and breast cancer. Cyp40 and FKBP1 are elevated
in prostate cancer compared to normal cells, positively
regulate androgen dependent prostate cancer growth, and
increase AR-dependent transcription [164, 165]. Growth of
such cancers is suppressed by cyclosporine A and FK506,
the immunophilin ligands that inhibited several stages of
AR signaling [164, 165]. It had been shown previously that
Cyp40 and FKBP2 are increased in mammary carcinoma
cells by estradiol and that the antiestrogen drug ICI 182, 780
antagonized these increases [166].

FK506 binding proteins (FKBPs) including FKBP1 and
FKBP2 are related proteins that, like Cyp40, contain a PPIase
domain closely apposed to a TPR domain [135, 136]. As with
Cyp40, co-chaperone activity is associated with the PPIase
domain but does not require PPIase activity [137]. For FKBP2
at least, sequences in the PPIase domainmay interact with the
ligand binding domain of Hsp90 [137]. FKBP2 may function
by increasing nuclear transport through interaction with the
motor protein dynein. Although structurally similar, these
two Hsp90 co-chaperones appear to have opposing effects
on nuclear receptor transcriptional activity, with the tightly
binding FKBP1 inhibiting activity and the more loosely
associated FKBP2 activating at least in the case of MR, GR,
PR and AR [134, 137].These immunophilinsmay compete for
binding to nuclear receptor-chaperone complexes through
differential binding to the TBD of Hsp90, and for instances
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FKBP2 can reverse the inhibitory effects of FKBP1 on GR
activity [167]. However, Cyp40 was unable to oppose the
trans-inhibitory effects of FKBP1 [134]. Recently another
member of the FKBP family has emerged FKBP-like or
FKBPL that may have high significance in cancer [138, 168,
169]. FKBPL has a conserved TPR domain although the
PPIase domain is divergent compared with FKPP1, 2 [138].

As mentioned above-immunophilins appear to be sig-
nificant in hormone-dependent cancer, and FKBP1 in par-
ticular is enriched in prostate cancer as opposed to benign
tumors and stimulates androgen-dependent transcription
and growth [164–166, 170, 171]. FKBP2 appears to play a role
in breast cancer and treatment with estradiol led to a 14-fold
increase in expression [166]. FKBPL is associated with ER in
breast cancer, and increased levels of the protein indicate a
good prognosis in the case of this disease [138].

TTC4. Tetraticopeptide 4 (TTC4) is another TPR domain
protein and was originally discovered in a screen for loss
of heterozygosity in the chromosomal 1p31 region associated
with breast cancer and was thus implicated as a tumor
suppressor gene [148, 149]. TTC4 appears to function in the
nucleus and has been implicated as a component of a complex
containing the histone acetyltransferase MYST/MOF and
in the assembly of transcriptional initiation factor TFIIIB
[149–152]. TTC4 is also a potential Hsp90 binding protein
and appears to have an important role in linking Hsp90
function to replication [153], TTC4 may thus have a role
in multiple nuclear functions including transcription and
replication and these may be linked to its tumor suppressor
properties.

TTC5. Tetraticopeptide 5 (TTC5) also known as stress-
responsive activator of p300 (Strap) contains six TPR
domains, and with these multiple interaction domains could
thus play a role as a scaffold protein in a similar way to Hop
[87, 88]. TTC5/Strap binds to the histone acetylase p300 and
is implicated in the activation of transcription in response to
stresses such as DNA damage and heat shock [88, 154, 155].
p300 is a cofactor for a wide range of transcription factors,
as well as forming complexes with an array of other proteins
and can modify both the associated factors as well as histone
H4 by acetylation [156]. Indeed, TTC5/Strap is implicated
in the regulation of GR as with other co-chaperones such
as Cyp40, FKBP1, and FKBP2 and could potentially couple
molecular chaperones and stress to transcriptional activation
[157]. TTC5/Strap may thus play a role in transcriptional
regulation during stress responses to heat shock or DNA
damage although currently no evidence appears to link this
co-chaperone to cancer.

XAP2/AIP. Another TPR domain containing Hsp90 binding
co-chaperone is XAP2, also known as AIP [158].This protein
is a member of the immunophilin family and regulates activ-
ity of steroid hormone receptors such as the aryl hydrocarbon
receptor and the estrogen receptor 𝛼 (ER𝛼) [159, 160]. The
co-chaperone could potentially play a role in breast cancer
through its negative regulation of ER𝛼 [159]. ER can stimulate
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Figure 3: Oncogenic or tumor suppressive influence of molecular
co-chaperones. (Hop is shown twice in the cartoon to depict its role
in bridgingHsp70 andHsp90 aswell as its pro-oncogenic influence).

mammary cancer growth but can also function as an inhibitor
of metastasis, and its exact role in cancer would thus be
difficult to predict [161].

5. Overview: Cochaperones and Cancer

As co-chaperones are essential for significant molecular
chaperone activity in vitro, one might predict a uniform
procancer role for these molecules as with the primary
chaperones. However, their role in cancer appears to be
complex. It is thus evident that a number of co-chaperones
are overexpressed in cancers and signal a poor prognosis
in patients and may be candidates for the development of
novel approaches to cancer therapy. Hop, p23, p50/Cdc37,
Aha1, FKBP1, and FKBP2 appear to be intimately involved
in the chaperoning of molecules involved in cancer inci-
dence and progression (Figure 3). Cancers appear to become
addicted to these co-chaperones in a similar way to their
dependence on the primary chaperones, requiring these co-
factors to maintain elevated levels of oncogenes which are
often mutated during carcinogenesis [18, 21]. In addition, the
BAG domain proteins appear to indicate a poor prognosis
for cancer patients due to their inhibition of apoptosis—one
of the key hallmarks of cancer [172, 173]. However, a sizable
number of the co-chaperones, including HspBP1, the JDP
family proteins, FKBPL, and TTC4 appear to signal a good
prognosis in cancer suggesting that they may have tumor
suppressive functions (Figure 3). As mentioned above, TTC4
in particular was identified in a loss of heterozygosity screen
for tumor suppressor genes.

6. Molecular Chaperones and Cochaperones
in Cancer Treatment

The targeting of Hsp90 in cancer was initially stimulated by
the availability of drugs such as geldanamycin and radicicol
that bind to and inhibit its ATPase domain [174, 175]. Hsp90
has since become a heavily targeted molecule, and several
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generations of anticancer drugs including the 17-allylamino-
17-demethoxygeldanomycin (17-AAG) showed promise in
cancer treatment [176, 177]. More modern synthetic drugs
have recently become available that have solved some of
the early problems with drug toxicity, and progress in this
area can be expected [174]. Hsp70/HSPA family members
also have considerable promise as targets in cancer and
proteins such as Hsp72, Hsp70.2, and mortalin are increased
in breast cancer and when inhibited elicit apoptosis [178–
180]. In addition, the Hsp70 family members appear essen-
tial in chaperoning oncogenic proteins as is observed with
Hsp90, and compounds capable of inhibiting the Hsp70
chaperones are beginning to emerge [181]. In addition, a
recent pharmacological study of AR signaling using gene
expression profiling indicated two more classes of drugs
thatmight inhibit chaperone/co-chaperone interactions. Two
drug families, centering on the natural compounds celastrol
and gedunin, were uncovered [182]. Celastrol was shown to
disrupt the function of the Hsp90/Cdc37 complex, a key
growth-requiring pathway in prostate cancer and thus is a
promising agent for this disease [183]. The drug is however
somewhat lacking in specificity and also directly inhibits
I𝜅B kinase and the proteasome as well as activating HSF1
[184]. As mentioned above, gedunin inhibits p23, another
prooncogenicHsp90 co-chaperone [115].Therefore, although
in its infancy, the concept of targeting co-chaperones in
cancer treatment seems feasible and practical.
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